Занимательная математика

Нет нужного тематического раздела? Пишите сюда
Ответить
Аватара пользователя
Мистер Паркер
Создатель более чем 1024 сообщений в форуме
Сообщения: 1801
Зарегистрирован: 20 янв 2011, 10:53

Занимательная математика

Сообщение Мистер Паркер » 13 май 2015, 08:27

Парадокс дней рождения

Суть проблемы заключается в следующем: если существует группа из 23-х или более человек, вероятность того, что у двух из них дни рождения (число и месяц) совпадут, превышает 50%. Для групп от 60-ти человек шанс составляет свыше 99%, но 100% достигает, только если в группе не менее 367-ми человек (с учётом високосных лет). Об этом свидетельствует принцип Дирихле, названный по имени его открывателя, немецкого математика Петера Густава Дирихле.
Строго говоря, с научной точки зрения это утверждение не противоречит логике и поэтому не является парадоксом, зато оно отлично демонстрирует разницу результатов интуитивного подхода и математических расчётов, ведь на первый взгляд для столь небольшой группы вероятность совпадения кажется сильно завышенной.
Если рассматривать каждого члена группы по отдельности, оценивая вероятность совпадения его дня рождения с чьим-либо другим, для каждого человека шанс составит примерно 0,27%, таким образом, общая вероятность для всех членов группы должна быть около 6,3% (23/365). Но это в корне неверно, ведь количество возможных вариантов выбора определённых пар из 23-х человек гораздо выше числа её членов и составляет (23×22)/2=253, исходя из формулы вычисления так называемого числа сочетаний из данного множества. Не будем углуб** в комбинаторику, можете на досуге проверить правильность этих расчётов.
Для 253-х вариантов пар шанс, что месяц и дата рождения участников одной из них окажутся одинаковыми, как вы наверняка догадались, значительно больше 6,3%.


Ответить

Вернуться в «Чат Мэй-ли»